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An iterative-recursive SOS-based method for

separation of Post-Nonlinear Mixtures
Caroline P. A. Moraes, Aline Neves, Denis G. Fantinato

Abstract— Independent Component Analysis (ICA) methods
are widely used in the linear Blind Source Separation (BSS)
problem. Nevertheless, for some practical cases, the linear as-
sumption is not valid, requiring nonlinear mixing models. The
Post-Nonlinear is one of the few nonlinear models in which ICA
is able to perform source separation. In previous works, an
iterative SOS-based algorithm was proposed, combining elements
of AMUSE and SOBI. However, instantaneous estimations of
the correlation matrix could lead to a loss of performance. In
that sense, in this work, we modify the previous algorithm to
use an iterative-recursive estimation of the correlation matrices.
Due to the SOS-based approach, sources should present a
temporal dependency and certain constraints are required on
the separation structure. Results show a good performance of
the proposed algorithm.

Keywords— Blind Source Separation, Post-Nonlinear, Second-
Order Statistics.

I. INTRODUCTION

Blind Source Separation (BSS) is an important problem

within the signal processing area. Essentially, it aims at

retrieving the original signals from a set of observed mixed

signals [1], [2]. In BSS, both sources and the mixing process

are unknown, which leads to an unsupervised approach based

only on samples of the mixed signals and statistical character-

istics of the sources. At first, research was mainly focused on

the linear case, presenting a solid theoretical framework and

counting with applications in several areas, such as biomedical

signal processing [3], communication systems [1] and geo-

physical signal analysis [4]. Without any prior information,

the problem is not solvable [1], [3]. In that sense, it is usually

assumed that sources are mutually independent, which gave

rise to the Independent Component Analysis (ICA), a set

of techniques widely used for solving the BSS problem [2],

such as Infomax, FastICA, Bell-Sejnowski and JADE [1],

[2]. Since measuring independence often involves working

with Mutual Information, most of the algorithms have an

inherent dependence on Higher-Order Statistics (HOS), which

leads to certain difficulties, such as high complexity or the

necessity of a large number of samples [1]. On the other hand,

simpler algorithms were proposed based on Second-Order

Statistics (SOS) for solving the linear BSS problem, exploring

the temporal dependency among samples, like AMUSE [1],

SOBI [5] and TDSEP [2].

For some applications, however, the linear mixing assump-

tion is not enough for retrieving the sources, since the mixing

process encompasses nonlinear transformations, as occurs in
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hyperspectral imaging [6] and chemical sensor arrays [7].

Under a generic nonlinear BSS perspective, ICA methods

are intended to fail. In that sense, the studies in this area

are focused on constrained nonlinear models where the ICA

techniques are still valid, such as linear quadratic, Bilinear and

Post-Nonlinear (PNL) [8], [9] models.

Great efforts have been dedicated to the nonlinear BSS

problem, including the recent extensions of the SOS-based

new methods, assuming temporally dependent sources [9],

[10]. In [11] and [12], the authors present some algorithms

developed from SOS-based criteria applied to the PNL model,

showing that it is possible to use these methods, under certain

constraints. However, this approach still lacks an algorithm

simpler and robust. The A-SOBIPNL was proposed in [13],

consisting of an SOS-gradient-based algorithm for separation

of PNL mixtures, using elements of the classical AMUSE

and SOBI algorithms. The initial tests showed very good

results in terms of SIR (85 dB), but considering reasonably

simple simulations scenarios. For a deeper analysis, in [14]

the A-SOBIPNL was tested in scenarios with more stringent

nonlinear functions, showing promising results. Nevertheless,

the instantaneous estimations of the correlation matrices could

lead to a loss of performance. In this work, we propose a

modification in the A-SOBIPNL, estimating the correlation

matrices recursively. As we will show, such a new approach

improves the performance of the algorithm and also makes it

more efficient in terms of computational cost, since working

with a small number of samples is sufficient to obtain a good

result.

In Section II, we describe the BSS problem and define the

PNL model. In Section III, the recent results involving SOS-

based algorithms that motivates this work are presented. The

modified SOS-based algorithm is proposed in Section IV. The

simulation results are presented and analyzed in Section V.

Finally, Section VI concludes the work and presents future

perspectives.

II. NONLINEAR BLIND SOURCE SEPARATION

In the following, we describe the general concept of the

nonlinear BSS problem.

A. Post-Nonlinear Model

The Post-Nonlinear model assumes that, in the mixing

process, there exists a nonlinear component-wise function

f(·) = [f1(·) . . . fM (·)]T that is invertible and monotonic.

The mixing process can be modeled by:

x(n) = f(As(n)), (1)



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

where n is the time index, x(n) is the M -dimensional

observation vector x(n) = [x1(n), x2(n), . . . , xM (n)]T ,

s(n) is the vector of unknown sources s(n) =
[s1(n), s2(n), . . . , sN (n)]T , where N is the number of

sources and A is the mixing matrix with dimension M ×N .

The aim is to find the matrix W and the nonlinear function

g(·) that could retrieve the sources in a new vector y(n) =
[y1(n), y2(n), . . . , yN (n)]T , so that:

y(n) = Wg (x(n)) , (2)

where W, with dimension M × N , ideally is equal to the

inverse of A and g(·) is a vector with column-wise nonlinear

functions, ideally the inverse of f(·) (hence, strictly mono-

tonic) [1], both admitting scale invariance and/or permutation

between the signals. The system model is illustrated in Fig. 1.
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Fig. 1. Post-Nonlinear Mixture Model.

By applying an ICA method, it is expected that W and g(·)
be adjusted so that signals in y(n) be mutually independent.

III. SECOND-ORDER STATISTICS IN THE PNL MODEL

In the linear BSS problem, there are several SOS-based

methods that could be applied to adjust W, for instance,

TDSEP or WASOBI [1], [3]. However, for the nonlinear case,

the use of SOS is still incipient. For PNL mixtures, initial

approaches considered SOS along with HOS, adapting matrix

W and nonlinear function g(·) separately. In these cases, the

coefficients of the nonlinear function g(·) are adjusted using

HOS by exploiting the ”Gaussian” effect [15] or by using a

priori information [9], [16], while W is adapted using SOS-

based approaches.

Recently, new methods were proposed using the SOS to

adjust both linear and nonlinear parts of the PNL model –

W and g(·), respectively [12], [15], [13], [14]. In this case,

source separability can be ensured if, besides classical linear

BSS conditions are met [2], [3], a linear component in z(n) =
g(x(n)) do exist. In other words, for a given (and usually

unknown) f(·), g(·) must be constrained so that the output be

y(n) = Wg ◦ f (WAs(n)) = WAs(n)+Wf̃ (As(n)) , (3)

i.e., the composite function g ◦ f(·) results in a linear com-

ponent plus a nonlinear residual f̃(·) [11]. In this case, the

residue f̃(·) can be eliminated by the joint diagonalization of

correlation matrices of the recovered sources, for sufficient

different time delays. However, a necessary condition is that

the linear component in (3) be not suppressed [12].

IV. THE MA-SOBIPNL ALGORITHM

The approach applied in [12] is based on the use of

metaheuristics for parameters optimization and is a relevant

step towards the use of the SOS in the nonlinear BSS problem.

However, this method is computationally costly, mainly due to

the populational-based approach.

The work developed in [13] presents a first result in the

sense of searching for a simpler algorithm based only on SOS

for the PNL model. The method combines two classical SOS-

based approaches: AMUSE is used to separate the linear stage

of the mixture and SOBI is used to separate the nonlinear stage

(being named A-SOBIPNL algorithm). First results shown

in [13], [14] suggests that the algorithm can perform well,

as long as Eq. (3) is satisfied. However, the algorithm used

instantaneous estimations of the correlation matrices, taking

into account only the current sample window. In this paper, the

algorithm presented in [13] is modified, considering a recur-

sive estimation of the correlation matrices with the objective

of increasing the algorithms performance. In this section, we

will present MA-SOBIPNL, with its proposed modification.

A. Linear Stage

The AMUSE algorithm is a technique for diagonalization

of autocorrelation matrices, which is based on the properties

of eigenvalues and eigenvectors [2]. This algorithm requires

an initial stage of data whitening, which is usually not used

in nonlinear models. However, in A-SOBIPNL, z(n) is firstly

whitened – z(n) is ideally composed only of linearly mixed

signals [13]. The whitening process is based on the correlation

matrix of z(n), whose estimation can be done as

R̃Z(d, n) =
1

L

L−1
∑

i=0

z(n− i)zT (n−i−d), (4)

where L is the number of samples available in a sliding time

window and d is a given delay.

Initially, the whitening matrix V is obtained by estimation

of R̃Z(0, n) and then computing V = E D−1/2 ET , where

D is a diagonal matrix with the eigenvalues and E is a matrix

with the eigenvectors of R̃Z(0, n). Once V is obtained, the

whitening process results in z′(n) = Vz(n).
In order to improve the quality of the correlation matrix

estimation, we use a recursive approach along with the sliding

time window and apply a forgetting factor (λ):

R̃Z′(d, n) = λR̃Z′(d, n−1)

+
(1− λ)

(L− d)

L−1
∑

i=0

z(n− i)zT (n−i−d).
(5)

After this process, AMUSE uses the eigenvectors of

R̃Z′(d, n), with d 6= 0 to obtain a separating matrix W, such

that y(n) = Wz′(n) is mutually uncorrelated.

B. Nonlinear Stage

The nonlinear function g(·) may be written as a linear

combination of powers of x(n) [11]:
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gk(xk(n)) = cTk ξk(n), k ∈ {1, . . . ,M} (6)

where ck = [ck1 ck2 . . . ckb]
T are the coefficients of

the k-th function gk(·) with k = 1, . . . ,M and ξk(n) =
[x1

k(n) x
2

k(n) . . . xb
k(n)]

T is the vector with the k-th mixture

to the power of 1 to b, where b is the highest admitted degree.

To adjust the nonlinear part, i.e. the coefficients of gk(·),
SOBI criterion is used [5], [13], whose cost function can be

expressed by:

J(W, c) =
∑

d∈D

off(RY (d)), (7)

where D is the set of delays to be considered, RY (d) =
E
[

y(n) yT (n−d)
]

and off(RY (d)) is

off(RY (d)) =
∑

i6=j

r2ij , (8)

where i and j represent the row (i ∈ {1, . . . , N}) and the

column (j ∈ {1, . . . ,M}) of RY (d), respectively. Here, dif-

ferently from [13], RY (d) will also be estimated recursively:

R̃Y ′(d, n) = λR̃Y ′(d, n−1)

+
(1− λ)

(L− d)

L−1
∑

i=0

y(n− i)yT (n−i−d).
(9)

According to Eq. (7), ideally, the greater the number of

delays used, the more information can be considered by the

algorithm, contributing for a better separation.

As adaptation rule, the gradient descent method was used

to adjust the coefficients ck [13]:

ck(n+ 1) = ck(n)− µ
∂J(W, c)

∂ck
, (10)

where µ is the adaptation step and

∂J(W, c)

∂ck
=

∑

d∈D

∑

i6=j

∂r2ij(d)

∂ck
, (11)

with

∂r2ij(d)

∂ck
= 2rij(d) (E [ξk(n)wikyj(n−d)

+ξk(n− d)wjkyi(n)]) ,

(12)

where wij are the coefficients of the matrix W at line i and

column j, respectively.

In order to ensure the validity of Eq. (3), a constraint must

be applied to the ck coefficients after (10). Following what

was done in [13], we will keep the coefficients of ck1 non-

null and positive, for all k, to preserve the linear term in (3),

so that they are not suppressed during the adaptation. This

approach requires some kind of partial knowledge about the

non-linearity f(·) and, in this case, ck1 > 0 implies that gk(·)
will be an increasing monotonic function.

The steps of this modified algorithm, named MA-SOBIPNL,

are summarized in Alg. 1. In the first iteration (i.e. n = 0),

we assume λ = 0, since we have no previous information

about the correlation matrix. Note that, if λ = 0, we have the

previous A-SOBIPNL.

Algorithm 1 MA-SOBIPNL Algorithm

Initialization of MA-SOBIPNL parameters:

d, µ, L; c← 1 (g(·) function); W← 0;

for each sliding window do

z(n)← g(x(n));

Linear Stage:

Whitening of z(n):
z′(n)← Vz(n);
Recursive estimation of the correlation matrix:

R̃Z′(d, n) = λR̃Z′(d, n−1)

+
(1− λ)

(L− d)

L−1
∑

i=0

z(n− i)zT (n−i−d);

Update of W according to AMUSE;

y(n) update : y(n)← g(Wz′(n));

Nonlinear Stage:

Estimation of R̃Y (d, n) with L samples window:

for each delay d ∈ D do

R̃Y ′(d, n) = λR̃Y ′(d, n−1)

+
(1− λ)

(L− d)

L−1
∑

i=0

y(n− i)yT (n−i−d);

Gradient estimation by (11) and (12);

end for

Coefficients adaptation of g(·) by Eq. (10);

Constraints on g(·) coefficients and normalization;

end for

V. PERFORMANCE ANALYSIS

A. Simulation Scenario

In this paper we focus on analysing the properties of the

MA-SOBIPNL algorithm. Thus, we will consider the cases in

which the constraint upon ck is or is not applied, situation that

could violate (3).

In order to study the performance and the effects of the

MA-SOBIPNL algorithm with and without the constraints on

the nonlinear function g(·), in this section we present some

simulations results. We consider two independent sources, one

with Gaussian distribution (zero mean and unit variance) and

the second has an uniform distribution with a range from −1
to 1. The temporal dependence between the samples were

inserted in each one of the independent sources through the

use of FIR (Finite Impulse Response) filters, with impulse

responses: h1(z) = 1 + 0.6z−1 − 0.2z−2 + 0.6z−3 and

h2(z) = 1− 0.4z−1 − 0.3z−2 + 0.2z−3. The output of h1(z)
is the source s1(n) while the output of h2(z) is s2(n). Both

were normalized.

In the linear mixing stage, the sources were mixed by the

matrix A = [0.65 0.23; 0.35 0.76] and, in the nonlinear stage,

f(·) is

f(u(n)) = arctanh (u(n)) = arctanh (As(n)), (13)



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

i.e., an inverse hyperbolic tangent function. The chosen sepa-

ration structure assumes that W is a 2× 2 matrix and g(·) is,

component wise, given by:

gk(xk(n)) = ck1xk(n) + ck2x
3

k(n) + ck3x
5

k(n). (14)

The application of the constraint on the coefficients ck, is

possible if there is some information about the function f(·).
In this case, the function has features of an inverse hyperbolic

tangent function. In that sense, to keep the validity of the

Eq. (3), after each adaptation, we apply ck1 ← 1, for k =
{1, 2}. In addition, the coefficients ck were normalized to keep

the energy of z(n) constant.

In all cases, an average of 100 independent simulations

is considered, being the algorithms performance measured in

terms of SIR (Signal-to-Interference Ratio), defined as:

SIRdB = 10 log

(

E[yi(n)
2]

E[(si(n)− yi(n))2]

)

. (15)

B. Performance Analysis - Forgetting factor

The forgetting factor is a parameter that influences the per-

formance of the MA-SOBIPNL algorithm. Firstly, we varied

the value of λ from 0.5 to 0.99 and fixed the delays in d = 3,

using a sliding window of L = 5 samples and µ = 0.05.

Firstly analysing λ, Fig. 2 shows the case with constraint

and Fig. 3 the case without constraint – moving average was

applied in SIR values for curve smoothing. It is noticeable

that the algorithm converges to higher values of SIR using

λ = 0.99, reaching 47, 3 dB and 44, 7 dB, respectively.

In addition, Fig. 2 shows an interesting relation between λ

and SIR: SIR increases as the value of λ increases, showing

how the use of a memory on the estimation of the correlation

matrices, given by the term R(d, n−1) in (5) and (9), improves

the quality of the estimation and the performance of the

algorithm. The relation between these parameters in Fig. 3

is not so regular as in the previous case, but for values above

0.8 the SIR values also increase with λ.
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Fig. 2. The convergence analysis with different forgetting factor - Case with
constraint

Comparing both figures based on the best results of each

one, it is possible to note that the algorithm with constrains
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Fig. 3. The convergence analysis with different forgetting factor - Case
without constraint

converges faster than that without constraints. In Fig. 2 the

algorithm only requires 200 iterations to converge while for the

case without constraint, the algorithm demands around 2850
iterations to converge, as is shown in Fig. 3. These figures

show how unpredictable and occasionally slower the results

can be when the restrictions are not applied for each scenario.

For the case without constraints in Fig. 3, the solutions did

not violate the separation conditions given by (3), resulting in

a good performance.

C. The MA-SOBIPNL × A-SOBIPNL

In this second analysis, we compare the performances of the

previous A-SOBIPNL[13] with those of the MA-SOBIPNL al-

gorithm proposed in this paper, with and without the constraint

of ck1 ← 1.

Fig. 4 presents the results with constraints where the A-

SOBIPNL is represented by λ = 0 and based on the previous

analyses, in the MA-SOBIPNL we used λ = 0.99. The number

of delays were fixed in d = 3, using a sliding window of L = 5
samples and µ = 0.05. We verified that the MA-SOBIPNL

converges to greater values of SIR than the A-SOBIPNL, i.e.,

47, 3 dB and 23, 2 dB, respectively. Additionally, we may

observe that even having small values for d and L the MA-

SOBIPNL performs very well while the A-SOBIPNL is not

able to achieve the same performance with such low values of

d and L.
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Fig. 4. The convergence in terms of SIR - Case with constraint
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For the case without constraint, the influence of the number

of delays and window length were very relevant. Fig. 5 shows

the results based on three different arrangements of these

parameters. The step-size considered was µ = 0.05 and we

also compare the performance of the two algorithms. In the

first arrangement, we fixed d = 1 and L = 5. In second

we increased the window length for L = 10 and the third

considered d = 3 and L = 5. As shown in Fig. 4, the MA-

SOBIPNL presented very good values of SIR (44, 7 dB) using

a small d and L while the A-SOBIPNL needs a larger sliding

window to improve its performance (27, 4 dB).

Fig. 5. The convergence in terms of SIR - Case without constraint

Although the algorithm requires more iterations to converge,

even in the worst parameters combination (with d = 1 and

L = 10) the MA-SOBIPNL obtained a SIR of 39, 5 dB

which is better than A-SOBIPNL with its higher SIR value.

After several different arrangements, all combinations lead the

MA-SOBIPNL to achieve higher SIR levels than those of the

previous A-SOBIPNL.

VI. CONCLUSIONS

In this work, we propose a modification of the A-SOBIPNL

algorithm, which is a method for nonlinear BSS based on

Second-Order Statistics and the PNL model. This approach

explores the temporal structure of the signals, using two

classical SOS algorithms, AMUSE and SOBI. This leads to

a very simple gradient-descent method. In the MA-SOBIPNL

algorithm proposed in this paper, the correlation matrix estima-

tion is done through a recursive approach, exploiting previous

estimations, which leads to an improve in performance.

Simulations results demonstrated the relevance of including

some constraints in the adaptation of the nonlinear function

parameters. In the evaluated scenarios using the constraints,

the algorithm reaches a robust value of SIR (47, 3 dB),

while in the case without restrictions the value of SIR is

unstable, convergence is slower and reaches lower SIR levels.

Moreover, the results showed the influence of the forgetting

factor in the MA-SOBIPNL. The right choice of this parameter

can improve source retrieving compared to the original A-

SOBIPNL algorithm. In the future, we consider extending the

work using more complex scenarios and applying this method

in practical cases.
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