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Geometrical Representation for Number-theoretic
Transforms

H. M. de Oliveira and R. J. Cintra

Abstract— This short note introduces a geometric representa-
tion for binary (or ternary) sequences. The proposed representa-
tion is linked to multivariate data plotting according to the radar
chart. As an illustrative example, the binary Hamming transform
recently proposed is geometrically interpreted. It is shown that
codewords of standard Hamming code H(N = 7, k = 4, d = 3)
are invariant vectors under the Hamming transform. These
invariant are eigenvectors of the binary Hamming transform. The
images are always inscribed in a regular polygon of unity side,
resembling triangular rose petals and/or “thorns”. A geometric
representation of the ternary Golay transform, based on the
extended Golay G(N = 12, k = 6, d = 6) code over GF(3) is also
showed. This approach is offered as an alternative representation
of finite-length sequences over finite prime fields.

Keywords— Finite fields, Hamming binary transforms, Golay
ternary transforms, geometric representations.

I. INTRODUCTION

Discrete transforms defined over a finite field are signal pro-
cessing tools capable of providing Fourier analysis [1], [2], [3]
while operating in error-free structure. Because its arithmetic
is performed in a finite field, fixed-point implementations can
provide exact computation and simple hardware requirements.
Several signal processing contexts were benefited by finite
fields transforms [4], [5], [6], [7], [8] with applications linked
to the computation of the discrete convolution by means of
modular arithmetic and to image processing methods [9], [10].
Number-theoretic transforms (NTTs) are finite-field transforms
that operate over GF(p), where p is a prime number, as
opposed to operating over the extension field GF(q), where q

is a power of a prime. Such particular results in simple, error-
free architectures while preserving an analogy to real-valued
computation.

Besides their applications in signal processing, NTTs have
been linked to error correcting codes. Based on the Fourier
NTT and the Hartley NTT, the Fourier and Hartley codes were
introduced [11], [12]. Conversely, popular error-correcting
codes [13], such as the Hamming [14] and Golay codes [15],
inspired the introduction of the Hamming number-theoretic
transform (HamNTT) [16] and the Golay number-theoretic
transform (GNTT) [16] which extend the theory introduced
in [17], [18]. In fact, an isomorphism between linear codes
and transforms was identified in [16].

The goal of this paper is to introduce a representation
for sequences over GF(p) as a tool for the investigation of
number-theoretic transforms.
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Fig. 1. Constellation for N = 16 and p = 5. Each radial axis corresponds
to a message symbol. The arrow indicates the symbol ordering.

II. GEOMETRIC REPRESENTATION

Let GF(p) be a Galois field of order p, where p is a
prime number. A message of length N is a sequence x =
[x0, x1, . . . , xN−1] such that xi ∈ GF(p), i = 0, 1, . . . , N−1.
Based on the radar representation [19] (also referred to as web
chart or spider chart), we propose a geometrical representation
for such messages. The geometric representation consists of
mapping the message symbols in points on the complex plane
according to the following expression:

zk = xk (mod p) · exp

(

j
2π

N
k

)

, k = 0, 1, . . . , N − 1.

(1)

The set of points {z0, z1, . . . , zN−1} defines a constellation on
which a geometric shape composed of polygons and segments
can be derived.

The geometric representation is constructed according to the
following procedure:

1) Locate on the complex plane the loci of the N th roots
of the unity ej

2π

N
k, k = 0, 1, . . . , N − 1;

2) Scale each root of the unity by the corresponding symbol
xk as shown in (1) and plot the resulting point zk on
the plane;

3) Draw line segments joining the points zk+1 and zk to
obtain the geometric representation.

For instance, Figure 1 shows the required constellation for
16-point messages over GF(5).

III. GEOMETRICAL REPRESENTATION OF BINARY

SEQUENCES

The special case p = 2 and N = 7 is suitably linked to
the Hamming NTT [16]. Based on the binary Hamming code
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Fig. 2. Geometric representation of codewords. (a) Geometric space. Circles
are filled or not according to the bits of the word. (b) Representation of the
word [1011101].

H(7, 4, 3), we get the 7 × 7 binary Hamming NTT, whose
transformation matrix is [18]

THamNTT =





















0 1 0 1 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















.

This transform has the property that its eigenvector matrix is
equal to the generator matrix of the code H(7, 4, 3), i.e.:

eig {THamNTT} =









1 1 0 0 0 0 1
1 1 1 0 0 1 0
1 0 1 0 1 0 0
0 1 1 1 0 0 0









= G.

Input data is represented by x = [b0, b1, . . . , b6], where
bk ∈ {0, 1}, k = 0, 1, . . . , 6. Such sequence is used to
create small circles on the dashed circunference shown in
Figure 2(a). If bk = 1, then a small circle filled in color is
placed at position zk = ej

2π

7
k; otherwise, if bk = 0, then

the small circles are not generated. The next step is the petal
creation: any two consecutive filled circles forms a triangle
with the origin (0, 0) producing a petal (alternately shaded in
light and dark color). Points b0 and b6 (cyclical geometry)
are understood as neighbors. Figure 2(b) represents the byte
[1011101]. The above linear transform maps 7-bit sequences
over 128 possible patterns. In the Appendix, Figure 7 lists all
7-bit sequences in the proposed representation. Figure 4(a)-
(b) shows a particular sequence and its associate transformed
sequence according to the HammNTT. Some sequences are
invariant to the Hamming NTT such as x = [1100001]⊤ which
satisfies THamNTT ·x = x. Figure 4(c)-(d) displays an invariant
sequence and its transformed sequence.

IV. GEOMETRICAL REPRESENTATION OF THE TERNARY

GOLAY TRANSFORM

For the ternary Golay codes, the extended Golay code has
parameters G(N = 12, k = 6, d = 6) over GF (3). The new
geometric space can be constructed by taking now a new

(a) 0000101 (b) 0111011 (c) 1001111 (d) 1010110

Fig. 3. Geometric representation (a) only thorns, (b)-(c) petals, and (d) thorns
and petals.

(a) 0011000 (b) 1111000 (c) 1100001 (d) 1100001

Fig. 4. (a)-(b) A sequence and its associate Hamming NTT sequence. (c)-(d)
An invariant sequence to the Hamming NTT.

ensemble of “representative complex points” according to:

qk = ri · exp

(

j
2π

12
k

)

, i = 0, 1, 2; k = 0, 1, . . . 11, (2)

where ri = i. Noticing that 2 ≡ −1 mod 3, we can write the
associate Golay NTT matrix as follows:

T
(1)
EG =














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
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1 −1 −1 −1 −1 −1 1 0 0 0 0 0
−1 1 −1 1 1 −1 0 1 0 0 0 0
−1 −1 1 −1 1 1 0 0 1 0 0 0
−1 1 −1 1 −1 1 0 0 0 1 0 0
−1 1 1 −1 1 1 0 0 0 0 1 0
−1 −1 1 1 −1 1 0 0 0 0 0 1
−1 −1 1 0 0 1 −1 1 0 0 0 0
−1 1 −1 1 0 0 1 1 1 0 0 0
−1 0 1 −1 1 0 1 0 1 1 0 0
−1 0 0 1 −1 0 1 0 0 1 1 0
−1 1 0 0 1 −1 1 0 0 0 1 1
1 −1 −1 0 −1 0 0 1 1 0 0 1
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The above matrix can be efficiently implemented in hardware
since it does not require any multiplication operations as its
entries are over {0,±1}. Thus the Golay NTT requires only
additions in order to be computed and it is applicable to any
sequence of the {GF(3)}12-space.

Illustrative examples of the effect of the Golay number-
theoretic transform [16] on ternary vectors of length 12 are
shown in Figures 5 and 6. Note that complex symbols are
always vertices of one of the two dodecagons. Again, colors
light blue and dark blue are adopted alternatively in consecu-
tive petals, without major implications, except in improving
the visualization. Three codewords were chosen at random:
[102010022101], [000000111221], and [201100010110]. By
applying the Golay NTT to these sequences, we obtain the
following transformed sequences:

T
(1)
EG · [102010022101]⊤ = [101021012210],

T
(1)
EG · [000000111221]⊤ = [111221001210]⊤,

T
(1)
EG · [201100010110]⊤ = [021220022122].
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(a) 102010022101 (b) 000000111221 (c) 201100010110

(d) 101021012210 (e) 111221001210 (f) 021220022122

Fig. 5. Golay NTT pairs. Input data: (a), (b), and (c); transformed data: (d),
(e), and (f), respectively.

(a) 100000011111 (b) 010000101221 (c) 001000110122

Fig. 6. Golay NTT pairs: Invariant sequences.

Invariants of the Golay NTT can the readily obtained
from the generator matrix. For instance, the following co-
dewords are invariants: [100000011111], [010000101221], and
[001000110122], as demonstrated by:

T
(1)
EG · [100000011111]⊤ = [100000011111],

T
(1)
EG · [010000101221]⊤ = [010000101221],

T
(1)
EG · [001000110122]⊤ = [001000110122].

In the Appendix, Figure 8 shows a subset of the possible
words.
the Hamming or Golay codes, which are self-dual codes [20].
Such codes could be employed to obtain new number-theoretic

V. CONCLUSIONS

This note introduces a geometric representation for finite
sequences of elements defined over a finite field. This appro-
ach provides a defiant reading for the Hamming and Golay
transforms. To the best of our knowledge, no similar proposal
to convert sequences into images was found, which consists of
assigning angles to the position of the symbol in the sequence
as described in (1). Phases (angles) are meaningless, as in
radar charts. Such a representation has potential applications
in several fields of error correcting codes and signal processing
over finite fields, including: (i) RLE run length encoding,
(ii) burst error correcting codes, (iii) binary SP, and (iv) theory
of filter banks. The proposed approach can lead to new
insights and interpretations in the design of coding and signal
processing methods dedicated to sequences over finite fields.
As future research, we aim at deriving extended versions of

transforms. As shown in the Appendix, several geometric and
symmetry patterns arise that can be further investigated. Such
symmetries might lead to a better understanding of practical
issues in programming and in hardware implementation linked
to the discussed codes.
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Fig. 7. Geometric representation of all binary 7-tuple.
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Fig. 8. Geometric representation of selected words of the discussed ternary Golay transform.


