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GSP-based DoA estimation for a multimission radar
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Abstract— A multimission radar (MMR) is employed on a
wide range of civilian and military missions. The accuracy
of the direction of arrival (DoA) estimation of MMR systems
is an important issue when locating targets. In this work,
a new approach to DoA estimation based on Graph Signal
Processing (GSP) is applied to data from a multimission radar. A
comparison of the GSP is carried out with classic DoA estimation
algorithms, including Delay and Sum, Capon, and Multiple Signal
Classification (MUSIC). A short aircraft trajectory is considered
as a reference for estimating parameters such as DoA in azimuth,
range and radial velocity, both for simulated and real-life signals.
DoA in elevation is estimated for simulated data, considering the
MMR architecture and target characteristics. Simulation results
have shown that the proposed method achieves estimations with
competitive accuracy in comparison to classical DoA estimation
methods.

Keywords— Graph Signal Processing, Direction of Arrival
Estimation, Array Signal Processing, Multimission Radar.

I. INTRODUCTION

In later years, a topic that has received increased attention
is the estimation of parameters related to emitters. Within this
context, the localization of emitters, especially with respect
to the direction of arrival (DoA), has been the focus of
research in fields such as RADAR systems for autonomous
driving [1], [2], as well as systems for military application
and satellite navigation [3], [4], among others. In order to
estimate parameters such as DoA, several techniques, espe-
cially the ones based on the response of antenna arrays to
incoming waves [5], [6], have been exhaustively investigated
over the years. We can divide the estimation techniques into
three major groups: conventional (such as multilobe amplitude
comparison, beamforming [7], and phase interferometry [5]),
Maximum Likelihood (ML) [8]–[11], and subspace-based
techniques [12]–[16].

This work addresses the use of a recent DoA estimation
technique based on Graph Signal Processing (GSP) [17] in a
modern Multimission Radar (MMR). The term multimission
radar is usually employed to describe a radar system that
supports a wide range of missions, including fire support,
surveillance (detecting and tracking of aircraft) and air de-
fense. The radar in which this work focuses on employs
a proprietary architecture such that the reflected pulses are
processed in order to detect targets and calculate parameters
such as 3D position (range, azimuth and elevation), and radial
velocity, among others.
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The contribution of this paper is the evaluation of the per-
formance of a modified GSP-based DoA estimation algorithm
in this scenario, where the zenith angle (complement of the
elevation angle) is the parameter to be estimated. Herein, the
GSP-DoA algorithm uses only a space-domain graph. Other
functionalities of the multimission radar signal processing,
such as target range and radial velocity, are estimated from
real-life signals.

Due to limitations of the experimental measurement cam-
paign employed in this preliminary investigation, the available
real data could not be used for vertical DoA estimation. Never-
theless, signals from the MMR were of paramount importance
for guaranteeing that simulated data were as close as possible
to real-life data. For this work, as seen in the following
section, the array geometry of the MMR was simplified to
an equivalent (vertical) eight antenna uniform linear array.

Taking into account the reduced schematic of the MMR
under investigation, we built a signal simulator to allow a
performance analysis of the GSP-based DoA estimator [17].
The simulated signals were linearly modulated in frequency,
two chirps, which have a larger spectral variation than those
employed before by the GSP-based DoA estimation method,
hereafter referred to as GSP-DoA. Simulation results from a
typical scenario are presented to compare estimation perfor-
mance with classical methods [18], such as Delay and Sum,
Capon, and MUSIC (MUltiple SIgnal Classification).

The paper is organized as follows. Section II presents the
radar signal processing, the simplified structure of the MMR
which explains how we obtained the signals from an antenna
array used by a multimission radar to estimate the direction
of arrival. In Section III, we provide an overview of the
main technique employed herein, the GSP-DoA, as well as
brief notes on the classical techniques used for performance
comparison. Section IV addresses the experimental results and,
finally, conclusions are drawn in Section V.

II. RADAR SIGNAL PROCESSING

This section is divided into two subsections. The first
presents a simplified radar structure, capable of receiving
continuous-time radar signals and down-converting it to a digi-
tized (discrete-time) baseband output, as presented in the block
diagram given in Fig. 1. The second subsection addresses the
signal processing performed in each channel of Fig. 1, in an
attempt to improve the process of detection and estimation of
the parameters required for target location.

A. Radar Architecture

The antenna architecture of the MMR under investigation
consists of a planar array that, on the reception mode, sums the
signals received on each of the horizontal sensors, such that an



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

M -sensor standard uniform linear array (ULA), as depicted in
Fig. 1, is considered for the direction-of-arrival estimation of
vertical angles. In this figure, we assume that a modulated
continuous-time signal xm(t) = s(t − τm)e−jΩ0(t−τm) +
nm(t), with frequency centered in Ω0 = 2πf0, impinges
in each m-th sensor with its respective time delay τm. For
narrowband signals, s(t − τm) can be approximated by s(t).
The signal contains white Gaussian noise, here represented by
nm(t).

A typical linear frequency modulation (LFM) waveform,
a chirp usually used in a pulsed radar system, varying its
frequency from fmin to fmax, can be expressed by s(t) =

cos
[
2π(fmint+ µt2

2 )
]
, 0 ≤ t ≤ l. In the previous expression,

µ = B/l corresponds to the LFM coefficient [19], with
B = fmax − fmin (chirp bandwidth) and l corresponding to
the pulse duration.

The first set of filters and local oscillators—represented
in a simplified way in Fig. 1 by BPF1, BPF2 and LO—
are responsible for reducing the operating frequency of the
radar to an intermediate frequency (IF) which will enter the
analog-to-digital (A/D) converter, with sampling rate fs. After
digitizing the signal, its discrete-time version is multiplied
by a complex exponential (ejωIFn) which, passing through
a low-pass filter, produces the baseband signal. The sampling
frequency is then reduced by a convenient decimation factor
(20 in our case). The same procedure is replicated on all
channels. The time delay on the m-th channel is given by
τm = (m− 1)d cos(θ)fs/vp, where d is the distance between
adjacent sensors, θ is the direction of arrival (DoA) of the
signal of interest (SOI), starting to count from zenith, and
vp is the wave propagation speed. The resulting signals, at
the output of each channel, are baseband signals xm(k) =
s(k)e−jΩ0τm + nm(k).

Fig. 1. Multimission Radar (simplified vertical ULA) structure.

B. Signal Processing Functionalities

In order to increase the signal-to-noise ratio (SNR) associ-
ated with each pulse in the detection process, the MMR uses a
set of filters, per m channel, in the reception. The output signal
of the impulse response of the i-th receiving filter (channel
index m dropped here for simplicity) may be given by

xPCi(k) =

∞∑
α=−∞

xi(α)h∗i (k − α) = xi(k) ∗ hi(k), (1)

where PC denotes Pulse Compression in each m-th channel
and hi(k) is the i-th filter. After filtering, maximum SNR is
attained when the impulse response corresponds to hi(k) =
si(−k), i.e., the well known matched filter [19].

At the sample k = K0, representing the exact moment that
the i-th reflected pulse from a target arrives at the receiver,
we define the signal-to-noise ratio SNRi(K0). After pulse
compression, the gain in the SNR is known to be

GPC =
SNRPCi(K0)

SNRi(K0)
= lsiBsi , (2)

which is referred to as the “Time-Bandwidth Product” [19],
lsi and Bsi corresponding, respectively, to the duration of the
pulse and the bandwidth of the i-th transmitted pulse.

SNR improvement is also obtained summing up the reflec-
tions of p pulses (complex baseband signals). This procedure
is referred to as Coherent Pulse Integration [19]. The output
signals of the matched filters, xPCi(k), 0 < i ≤ p, are stored
in a buffer and added after receiving the p-th pulse:

xPI(k) =

p∑
i=1

xPCi(k) = sPI(k) + nPI(k), (3)

where PI denotes Pulse Integration in each m-th channel,
sPI(k) is the sum of the signal portions and nPI(k) is the
sum of the noise portions.

After pulse compression and pulse integration are applied,
the range of a single target is obtained from the peak of
xPI(k), that is, from instant T0 = max

k
|xPI(k)|/fs.

Considering that the transmission pulse does not change
between transmissions and that the distortion suffered by the
p received pulses is time-invariant, it is easy to show that pulse
integration results in a SNR gain equal to GPI = p. Hence,
assuming the same time-bandwidth product for all channels,
the overall signal-to-noise ratio gain, after pulse compression
and pulse integration, is given as

GPCPI =
SNRPI(K0)

SNRi(K0)
= pBsls. (4)

For moving targets with radial velocity, a simple linear
summation of pulses may yield wrong results, once a phase
variation between reflected signals is observed due to the
difference in target range ∆R. To overcome this problem, the
MMR applies an FFT in the azimuth direction. This technique
consists of a sum with phase correction, where all frequencies
in the interval [−fs2 , fs2 ] are used, with the pulse repetition
frequency (PRF) as the sampling frequency. The output signal
of the FFT shows a peak in the frequency that corresponds to
the target’s Doppler frequency (fD), a peak when the phase
has been corrected, representing a coherent integration of the
signals. Knowing the Doppler frequency, the radial velocity is
obtained by the relation vR = fDλ

2 .
We assume, herein, that the azimuth is obtained via a

proprietary technique implemented by the MMR which is
considered out of the scope of this work. We are interested
in estimating the zenith angle (θ), the complement of the
elevation angle. The classical DoA estimation problem can
be solved from the time delay samples of the M sensors.
Our main goal in this paper is to evaluate the performance
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of the GSP-based DoA estimation [17] applied to an LMF
waveform in an MMR scenario and compare it to classical
DoA estimation solutions.

III. GSP-BASED DOA ESTIMATION

In GSP, the object of study is a signal supported on the
vertices of a graph. The graph represents complex interactions
of the data and, as such, provides a structure that can be
exploited. The GSP-Based DoA estimation proposed in [17]
uses two directed graphs. The first exploits the spatial infor-
mation of the array, while the second is based on the time
relation about consecutive samples on a single sensor. These
graphs are combined via Kronecker product, resulting in a
space-time graph. If the DoA is correctly chosen, the Graph
Fourier Transform (GFT) tends to have its energy concentrated
in one single element. Hence, to estimate the DoA, the GFT-
based method performs a grid-search to determine which DoA
generates the fittest space-time graph. Nevertheless, in radar
applications, although the signal of interest is narrowband in
the RF front end, it becomes broadband after being translated
to baseband. This makes the use of a time graph unfeasible. As
a result, the GSP solution to radar signals adopted herein uses
only a space-domain graph (single snapshot estimation). In the
following, we provide an overview of the GFT method, giving
special treatment to the modifications made to its original
version [17].

A. Space-domain graph

In the space-domain graph, each node corresponds to one
of the M sensors of the ULA. Distinct space graphs can be
proposed. In this work, we connected each node only with
its closest neighbors, except for the sensors at the extremities,
which are connected with its neighbor and to each other. The
weight of each edge is based on the representation of a delay
as a multiplication by a complex exponential. When a signal
(in the continuous-time domain) is narrowband and analytical,
a delay (τ , in second) can be represented by a multiplication
by the complex exponential e−jΩ0τ , where Ω0 = 2πf0 is the
central frequency of the incoming signal. Although the base-
band signal from each antenna is not narrowband, the delay
due to a certain DoA is maintained throughout the frequency
translation scheme such that the complex exponential is still
present in baseband. The proposed space-domain graph can
be seen in Fig. 2 while the space-domain adjacency matrix A
is given as:

A = 1
2



0 ejΩ0τ 0 · · · ej(M−1)Ω0τ

e−jΩ0τ 0 ejΩ0τ
. . . 0

0 e−jΩ0τ
. . . . . .

...
...

. . . . . . 0 ejΩ0τ

e−j(M−1)Ω0τ 0 · · · e−jΩ0τ 0


,

where the division by 2 is so that, defining the snapshot at
instant k as vector x(k) = [x1(k) · · ·xM (k)]

T, and assuming
the input signal a single tone, we can write x(k) = Ax(k).

Fig. 2. Space-domain graph.

B. GFT applied to DoA Estimation

The Graph Fourier Transform (GFT) uses the eigenvectors
of the adjacency matrix as the frequency components of the
transform. Thus, given that the eigendecomposition of the
matrix exists, A can be written as VΛV−1, where V is a
matrix formed by eigenvectors and Λ a diagonal matrix with
the eigenvalues of A. The GFT of a signal x is calculated
as x̂ = V−1x [20]. It is interesting to note that if the
adjacency matrix is Hermitian, it is possible to choose a
unitary eigenvector matrix V. Doing so, the matrix inversion
is simplified to V−1 = VH [21].

If the incoming signal is a single tone, vector x is an eigen-
vector of A with unit eigenvalue, as previously noted. Con-
sequently, the elements of the GFT of x are all zeros, except
for the element associated with the eigenvector corresponding
to the unitary eigenvalue. Nevertheless, in order for this to
happen, matrix A must be generated considering the correct
delays (defined by the DoA) and frequency, which are known
since we control the radar emissions. Thus, using correct DoA,
the GFT must have its energy mainly concentrated in the
GFT element with unitary eigenvalue, while incorrect DoA
generates GFTs with more scattered energy.

In order to measure the energy concentration of the GFT,
we define an objective function over variable θ, hereinafter
referred to as piquancy function:

ξ(θ) =
1√∑

i,i6=ieig
|x̂i|2

, (5)

where ieig is the index of the eigenvector (column of V)
associated with the unit eigenvalue; also, x̂ is normalized such
that

∣∣x̂ieig

∣∣ = 1.
Defining a grid search, we do not need to compute matrices

A, neither perform the decomposition on the fly. Instead,
taking into account that V is a function of θ, but does
not depend on the input signal, we can compute and store,
in advance, matrix V for all θ in the grid. This way, the
computational cost of each cycle is reduced to the calculation
of a matrix-vector multiplication, i.e., VH(θ)x.

Three classic methods of DoA estimation were chosen
as the basis for comparison. The first, a non-parametric
method known as Delay and Sum beamforming or Barlett
aproach [18], estimates the DoA by adding an equal and
opposite time delay to each signal in the array. We also
used a spectrum-based beamforming, the Minimum Likelihood
(ML) beamformer, also known as the Capon beamforming
algorithm [22], and MUSIC beamforming algorithm [12].
The MUSIC algorithm uses the spatial covariance matrix
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that carries spatial and spectral information of the incoming
signals. In all of them, the DoA estimation is carried out
through a grid search for the point that generates the output
signal with the highest energy.

To estimate the DoA with graph signal processing (GSP)
and classical methods, we used signals after pulse compression
and pulse integration, as described in the previous section.
For all methods, we used a single snapshot, the one with the
highest absolute value.

IV. EXPERIMENTAL RESULTS

The base scenario for the experiment consists of an aircraft
landing trajectory. The experiments were carried out in two
different ways: using narrowband signals xm(k) generated
by a simulator, and using data from a real-life MMR. The
antenna visibility region in azimuth ranges from −25◦ to 25◦.
The distances between the aircraft and the radar system were
obtained from real data and their values are known for the
visible region of 3◦ steps. An approach with real signals was
carried on. Although real-life data were not used to estimate
elevation, their use was critical to ensure the correct modeling
of the simulated signals in their various nuances. The input
elevation angles used in the simulation were based on aircraft
altitudes, presented by Flight Radar. Signals were generated
as shown in Subsection II-A. Parameters such as range and
radial velocity were compared for both simulated and real-life
data. The MUSIC algorithm considered the number of signals
of interest DSOI = 2, the SOI and a clutter.

A. Simulated Radar Signal

A simulation using a sequence of p = 41 pulses, with pulse
period l and chirp bandwidth B was carried out in the above-
described scenario.

To ensure that simulated data were as close as possible to
real-life data, the scenario is complemented with clutter and
multipath. Clutter has peak power Pcl =

Psig
2 , where Pcl and

Psig are the peak power of the clutter and the received signal,
respectively, and signal-to-noise ratio SNRcl = −21.62 dB,
which represents an object with Radar Cross Section (RCS)
of 1 m2 at 20.01 km. Multipath was implemented considering
a Rayleigh Fading Channel, which gives aleatory attenuation
and time-delay for each received signal ray. We considered an
8 ray multipath for the signal and a 5 ray multipath for the
clutter. Max time-delay for signal multipath is 150 samples,
that is, 3l

4 while max time-delay for the clutter is 100 samples
or l

2 . After coherent pulse integration, the clutter was removed
by a 60-point Hann window, centered on the highest energy
sample.

The zenith angle estimation was performed with the GSP-
DoA and with the classical methods. The same grid was
employed for all methods, with a step of 0.001◦. Table I shows
the mean absolute error (MAE) of each method. Note that all
methods had similar performance, with a slight advantage to
the GSP approach. Using range and elevation estimation, we
plotted the approximate trajectory in Fig. 3, confirming the
feasibility of the system.

TABLE I
ELEVATION MEAN ABSOLUTE ERROR IN DEGREES

DS CAPON MUSIC GSP
MAE 0.0541◦ 0.0541◦ 0.0615◦ 0.0524◦

Fig. 3. Estimated target trajectory, x-z view.

The azimuth of 18◦ and its respective target range was cho-
sen arbitrarily as the basis for comparison between simulated
and real-life signals. As seen in Subsection II-B, the Time-
Bandwidth Product at the instant of interest presents an im-
provement of the SNR of the order of SNRPCi = 102SNRxi .
After Coherent Pulse Integration an SNR improvement of the
order of p times SNRPCi is achieved, as presented in Fig. 4a.
It is clear from this figure the high SNR gain obtained without
increasing transmit power.

B. Real Data

The real-life data were collected on August, 27th, 2019,
in the vicinity of Viracopos airport, located in the city of
Campinas, São Paulo, Brazil.

Data from the MMR signal processing output were used as
a reference for the comparison to our estimations. Azimuth
and range selected for simulation were, actually, those of the
real-life estimations described in this subsection.

For real-life MMR signals, target detection through pulse
integration is shown in Fig. 4a. It is in accordance with the
simulated signals, the highest peak being located at range
16.645 km; however, several peaks are observed in the vicinity
of the peak of interest, probably due to the presence of clutter
and multipath due to the vicinity of an urban area. Some
techniques as Constant False Alarm Rate (CFAR) [23] can
be applied in this situation to improve the probability of
detection [18]; however, detection is not within the scope of
this work.

Pulse compression and pulse integration agreed with SNR
gains achieved in simulation: SNRPCi = 102SNRxi and
SNRPI = 41BiliSNRxi , respectively.

A comparison between simulated and real-life data was,
also, accomplished for the radial velocity (vr). For an azimuth
of 18◦, real-life radial velocity was 18.42 m/s while the radial
velocity estimated from the simulated signal was 18.03 m/s,
as shown by the right peaks in Fig. 4b.

The presence of a clutter can, also, be observed in Fig. 4b,
where a “no shifted” peak is present in the null radial velocity.
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Fig. 4. Simulated and real-life MMR signal processing: (a) Target range
observed by using Pulse Integration after compression, and (b) Target Radial
Velocity.

The “Azimuth FFT” was applied for all samples along the p
compressed pulses.

V. CONCLUSIONS

In this paper, we applied the GSP-DoA technique to esti-
mate the elevation angle from simulated signals of a Multimis-
sion Radar system. To our understanding, GSP-DoA estima-
tion of linearly modulated frequency (baseband) signals had
not been carried out previously. Simulation results show that
the proposed method works well for modulated signals, being
comparable to classic methods and showing itself as a modern
DoA estimation tool. Furthermore, computational complexity
can be reduced due to the fact that we can compute offline
the eigenvector of the adjacency matrix for each possible
DoA. Additionally, a brief comparison between simulation
and real data suggested, as expected, that techniques applied
to enhance the SNR gain tend to increase the probability of
the MMR system detecting a target. In a future work, we
will focus on the analysis of the processed outputs from the
MMR under investigation and perform vertical DoA estimation
(zenith angle) of real-data.
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