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Abstract— In this work, we present a new interpretation 

of recurrent separation strategies in terms of local 
inversion based on iterative methods for solving nonlinear 
equation systems. From this interpretation, we firstly 
obtain a fresh perspective on the important methods 
proposed by Hérault and Jutten and by Hosseini and 
Deville for solving, respectively, linear and nonlinear blind 
source separation problems. Afterwards, a new separation 
structure for dealing with linear-quadratic models is 
proposed, leading to improvements from the convergence 
standpoint with respect to the basic network proposed by 
Hosseini and Deville. Finally, elements of a dynamical 
analysis of the proposed network are provided, indicating, 
aside from the well-known risk of divergence towards 
infinity, the possibility of convergence to limit cycles and 
strange attractors. 
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I – INTRODUCTION 

Recurrent structures have been used for source separation 
since the very origin of this field of research, although, 
presently, their use is generally related to applications 
involving nonlinear mixing models. In the context of linear-
quadratic (LQ) mixtures, structures of this kind have been 
studied in great detail in a number of works (see for instance 
[5,8]), which allowed the establishment of a theoretical 
foundation for effectively dealing with the ensuing information 
retrieval task. 

In this work, we present an interpretation of recurrent 
separating structures in terms of a local mixture inversion 
based on the iterative solution of nonlinear algebraic equation 
systems. This interpretation, which can be applied to any kind 
of memoryless mixing model, is then used to show that the 
Hérault-Jutten and Hosseini-Deville canonical structures are, in 
their respective domains, equivalent to numerical methods 
based on first-order (linear) approximations. Later, a line 
search strategy is used to derive a new recurrent structure for 
LQ mixtures, which is shown, with the aid of simulations 
performed for two different experimental setups, to provide 
performance improvements insofar as stability is concerned. 
Finally, elements of a dynamical analysis of the new networks 
are exposed, revealing inter alia the possibility of convergence 
to limit cycles and strange attractors. This analysis confirms the 

relevance of intrinsic stabilizing mechanisms for the operation 
of the Hosseini-Deville architecture [8]. The perspectives for 
future work are vast, as the proposed interpretation, in practice, 
puts the whole repertoire of numerical equation-solving 
methods at the disposal of those interested in designing 
separating systems for nonlinear scenarios. 

The paper is organized as follows. In Section II, we discuss 
the basic aspects of the problem of source separation and also 
introduce the linear and linear-quadratic mixing models. In  
Section III, we present the relationship between recurrent 
separating structures and iterative numerical methods, 
revisiting the classical Hérault-Jutten and Hosseini-Deville 
approaches. Section IV contains the exposition of the obtained 
simulation results and of their analysis and Section V brings 
some conclusions and topics for future research efforts. 

II - SOURCE SEPARATION 

A recurrent problem in signal processing is to recover a set 
of source signals based on mixed versions of them. When only 
a very limited amount of information about the sources and the 
mixing process is available, this problem is referred to as blind 
source separation (BSS) [1,2]. Since its formulation, which 
dates back to the 1980’s [3], the problem of BSS has attracted 
considerable attention, which is justifiable both in view of its 
theoretical and practical relevance. For the sake of illustration, 
it can be mentioned that BSS is part of applications in fields 
like biomedical signal processing, audio analysis and 
telecommunications, just to cite some emblematic instances 
[1]. 

Essentially, the derivation of a BSS method encompasses 
three steps. The first one is related to the definition of a device 
that will act as the separating system.  Then, in a second step, 
one must define a separation criterion. For example, in BSS 
methods based on independent component analysis (ICA) [4], 
which are founded on the assumption that sources can be 
modeled as independent random variables, the separation task 
is fulfilled by building a device that somehow retrieves the 
statistical independence property lost after the mixing process. 
Finally, once the separating structure and a sound criterion 
have been chosen, one ends up with an optimization problem in 
hand. Therefore, one must choose a suitable numerical method 
in order to establish an effective framework.     

The focus of this work is on the first step mentioned in the 
last paragraph, namely the definition of the separating 
structure. While this problem is simple in the classical scenario 
considered in BSS – linear instantaneous mixtures and equal 
number of sources and mixtures –, it becomes a major issue 
when the mixing process is nonlinear. Indeed, for some types 

R. A. Ando, R. Attux and D. C. Soriano are with DCA/FEEC/University of 
Campinas (UNICAMP). L. T. Duarte is with FCA/UNICAMP. R. Suyama is 

with CECS/Federal University of ABC (UFABC). Y. Deville is with IRAP/ 

Université de Toulouse. C. Jutten is with the Gipsa-lab/Université Joseph 
Fourier and also with the Institut Universitaire de France. E-mails: 

assato@dca.fee.unicamp.br, attux@dca.fee.unicamp.br, 

leonardo.duarte@fca.unicamp.br, soriano@dca.fee.unicamp.br, 
ricardo.suyama@ufabc.edu.br,  Yannick.Deville@irap.omp.eu, 

christian.jutten@gipsa-lab.grenoble-inp.fr.  



XXX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT’12, 13-16 DE SETEMBRO DE 2012, BRASÍLIA, DF 

of nonlinear mixing systems, it may be difficult to obtain a 
separating device that is able to perfectly compensate for the 
mixing effects without violating the so-called separability 
requirements [1]. For instance, in order to deal with general 
nonlinear BSS problems, one could think of an ICA method 
applied to separating devices such as multilayer perceptrons 
(MLPs) or other systems endowed with universal 
approximation capability. However, such a strategy is risky, 
since a too flexible separating system may recover independent 
components that still correspond to mixed versions of the 
original sources [5]. In view of this problem, the research on 
nonlinear BSS has been mostly conducted on a case-by-case 
basis, in which the separating structure is defined according to 
the nature of the nonlinear mixing system. 

Among the most studied nonlinear mixing systems are 
those based on the linear-quadratic (LQ) model [5], for which 
one can find applications in the context of several problems, 
like separation of scanned images [9], design of smart chemical 
sensor arrays [10] and hyperspectral image processing [11]. 
Later in this section, we shall briefly review the LQ model, 
paying special attention to the recurrent separating system 
proposed in [5]. This solution was inspired by the classical 
linear BSS method proposed in [3], which is discussed in the 
sequel. 

 

II.1 – Linear Mixtures 

Let the vectors s(n) and x(n)  represent the sources and the 
mixtures, respectively. Classically, for an instantaneous linear 
mixing process, we have: 

 ( )     ( )     (1) 

where A denotes the so-called mixing matrix. Most BSS 
methods are developed to deal with the determined case, in 
which the number of sources is equal to the number of 
mixtures and, as a consequence, A is a square (and supposedly 
full-rank) matrix. 

The first solution to the linear BSS problem expressed in 
Equation (1) was obtained by Hérault, Jutten and Ans [3]. 
Essentially, their proposal was to cancel, by adjusting the 
coefficients m12 and m21 (see Equation (2) below), the 
nonlinear correlation between the fixed points, obtained for 
each x(n), of a recurrent network, which, for the case of two 
sources, is given by 

  (   )     ( )        ( )

  (   )     ( )        ( )
      (2) 

Note that source separation in this case can be carried out 
by simply considering the separating system given by  

 ( )     ( )        (3) 

where W is the separating matrix. However, there are some 
interesting aspects regarding the recurrent network presented in 
(2). For instance, this recursive system can be easily 
implemented on analog systems. Moreover, this network has 
inspired solutions in more complex cases, such as those arising 
from LQ models, which will be discussed in the next section. 

 

II.2 – Linear-Quadratic Mixtures 

A natural extension with respect to the linear model defined 
by Equation (1) can be introduced by considering quadratic 
terms. For instance, in the so-called linear-quadratic (LQ) 

model, the mixing process, considering the case of two sources 
and two mixtures, is given by: 

  ( )     ( )       ( )      ( )  ( )

  ( )     ( )       ( )      ( )  ( )
        (4) 

 

Contrarily to the linear case, the definition of a separating 
device for the mixing process (4) is not direct [5], especially 
when the number of sources is greater than two. In view of this 
problem, Hosseini and Deville [5] proposed a separating 
strategy based on the following recurrent system: 

  (   )     ( )       ( )      ( )  ( )

  (   )     ( )       ( )      ( )  ( )
    (5) 

 

The rationale behind this network is that, when the mixing 
parameters are known in advance (for example, for the non-
blind case), then, for a given sample of mixtures,  ( ), the 
sources   ( ) and   ( ) will correspond to an equilibrium 
solution of (5). An important question, therefore, is to analyze 
whether this equilibrium point is stable or not. This issue is 
discussed in [5]. In addition to the structure (5), Hosseini and 
Deville proposed an extended version of their basic network 
(5), which includes a self-feedback that stabilizes the network 
[8]. In this work, however, we shall use only the basic version 
of the network, with the intention of analyzing the extended 
version in a future work. 

Of course, in the context of BSS, the coefficients of the 
recurrent network expressed in (5) must be adjusted. This can 
be done by setting up, for instance, an ICA-based method that 
tries to maximize the independence between the signals 
retrieved by the network. In the present work, though, given 
that the focus is on the network itself, we will study only the 
non-blind case - for which the network coefficients are known - 
treated, for instance, in [8],   

 

III – SOURCE SEPARATION METHODS AND EQUATION 

SOLVING 

The main idea behind source separation methods is, given a 

certain mixing model and a number of mixtures, to be able to 

find the original sources up to information-preserving 

ambiguities (typically related to permutation and scaling [1]). 

Each signal can be considered to be a vector containing a set 

of samples acquired during a certain period of time. 

As previously mentioned, the source separation problem 

can either be said to be non-blind, for which the mixing 

coefficients are either known a priori or potentially estimated 

with the aid of a set of source and mixture values (as 

explained in [8]); or it can be said to be blind, in which case 

the coefficients are unknown and cannot be estimated in 

accordance with the previously described (non-blind) strategy. 

In the case of linear mixtures, as shown in (1), the mixing 

process can be understood in terms of a matrix A, and, in the 

context defined by (3), the canonical separating solution 

would be a matrix W equal to the inverse of A, without 

forgetting the aforementioned potential ambiguities. For 

general, memoryless non-linear mixtures, however, even in a 

case for which the mixing model is known, an analytical 

solution can be difficult or even impossible to find, which 
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establishes a clear demand for iterative methods. Due to the 

memoryless nature of the model, we can consider the mixture 

samples one at a time, without having to keep track of the 

previous values. For each instant  , a dynamical process 

regulated by an alternative time index   can be used to, 

ideally, reconstruct the original sources from the successive 

reached equilibria. 

Interestingly, as will be shown in the following, this 

dynamical approach can be understood not only as a means to 

reach certain equilibrium points, but as a general strategy to 

solve nonlinear algebraic equation systems and locally 

perform an inversion of the mixing process. Firstly, we will 

show that this interpretation brings a new perspective 

regarding the equivalence between the Hérault-Jutten and 

Hosseini-Deville approaches in their respective validity 

domains, and, moreover, indicates the possibility of using a 

number of different numerical methods for dealing with 

virtually any nonlinear mixing model.  

 

III.1 – Analysis of the Hérault-Jutten Approach 

Let us consider the linear mixing model shown in (1). As 

already stated, it can be globally inverted by using a system of 

the form of (3), if the inverse of A can be estimated. However, 

let us consider the problem from another point of view. If we 

rewrite (1) as: 

 ( ( ))     ( ) –    ( )            (6) 

we may consider the problem of estimating the sources as 

being equivalent to the task of numerically finding, for each 

available value of x(n), an estimate y(n) of s(n). In other 

words, the problem can be understood in terms of finding the 

roots of  ( ) or of iteratively solving a system of linear 

equations. A sort of ―first-order‖ method to accomplish this 

task assumes the form of: 

 (   )     ( ) –    ( )       (7) 

considering   as a diagonal matrix whose non-null elements 

account for the effective use of different, positive step-sizes 

for each direction. Using (6) and (7), we have 

 (   )    ( )     ( )      ( )  
    ( )    (    ) ( ) 

where G = - . This structure is equivalent, for a specific 

choice of G, to a discrete-time version of the classical Hérault-

Jutten approach to source separation [3], as described, for 

instance, in [5]. Therefore, in a certain sense, aside from the 

canonical interpretation of the validity of this approach in 

terms of equilibrium points, it is possible to interpret it as an 

iterative process to solve a linear system of algebraic 

equations. 

 

III.2 – Analysis of Recurrent Networks for LQ Model 

For the LQ model, we will now show that the separating 

system proposed by Hosseini and Deville [5], described in 

section II.2, is also equivalent to a ―first-order‖ method for 

iteratively inverting the mixing process. For the sake of clarity 

of exposition, considering a two-source case, the non-linear 

system  ( ) for which we want to find the roots can be written 

as: 

   ( )  [
  ( )       ( )      ( )  ( )    ( )

  ( )       ( )      ( )  ( )    ( )
] 

(8) 

Applying (8) to the ―first-order‖ method described in (7), 

and considering that   is the identity matrix, we obtain: 

  (   )    ( )       ( )      ( )  ( )

  (   )    ( )       ( )      ( )  ( )
     (9) 

which is essentially equivalent to the network structure 

proposed by Hosseini and Deville in (5). As a consequence, 

this network can be understood as operating as a ―first-order‖ 

iterative method to locally invert the system of nonlinear 

algebraic equations engendered by the mixing process. This 

appears to us as a valid theoretical perspective per se, but, in 

the next section, we will show that it can be useful to building 

new separating schemes in view of the possibility of resorting 

to the repertoire of available numerical methods. 

 

III.3 – Proposal of a Recurrent Network for LQ Mixtures 

Based on the Use of a Variable Step Size 

The use of recurrent networks for inverting LQ models is, 

to a certain extent, limited by the menace that the underlying 

dynamical process does not reach the desired equilibrium 

point. This problem, which is related to the stability of the 

employed network, was discussed and carefully addressed in 

[8]. In the following, we will show that the use of certain 

equation-solving numerical methods can lead to interesting 

results insofar as convergence is concerned. 

Let us return, once more, to the ―first-order‖ method shown 

in (7), assuming, this time, a scalar step-size : 

 (   )   ( )       ( )           (10) 

where α is a positive value lower than or equal to 1. The 

reason why we decided to use the scalar step-size α is that by 

decreasing the variation performed on each iteration, we can 

increase the method’s stability. 

Using the two-source case again for the sake of clarity, we 

have: 

  (   )  (   )  ( )

  (  ( )       ( )      ( )  ( )) 

  (   )  (   )  ( )

  (  ( )       ( )      ( )  ( )) 

(11) 

Notice that the above expression is basically a weighted 

average between the current value of    and   , and the value 

that would be admitted as the next on the Hosseini-Deville 

recurrent network given by (9). If    , then (11) is 

equivalent to (9). However, for    , the obtained network 

resembles the extended network introduced in [8]. 

To choose effective values for α on an iteration-by-iteration 

basis, we can use a simple one-dimensional search for a 

solution capable of generating an update leading to a decrease 

in ‖ ( (   ))‖ . This approach, which is an adaptation of 
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well-known ideas related to the subject of line search, can be 

based on elaborate methods, e.g. the Fibonacci and Golden 

Section algorithms [7].  

For our implementation, however, we used a simple method 

of iteratively decreasing the value of α (by multiplying it by a 

constant factor lower than 1) and recalculating the cost 

function ‖ ( (   ))‖  until it stops decreasing, since at 

this point, we can assume   to be the desired minimizing step. 

This produces the same results as the elaborate method 

mentioned, but slower. Since the method is already fast 

enough for the two-source cases, the elaborate versions of the 

algorithm were not required. 

 

IV – SIMULATION RESULTS 

IV.1 – Performance for different scenarios 

The proposed network, which includes a method for 

iteratively choosing the step size , has interesting ―stabilizing 

properties‖ that, in some cases, are responsible for 

performance improvements with respect to the canonical 

Hosseini-Deville networks. This will be illustrated with the aid 

of some concrete examples. 

In the first simulation, the sources are uniformly 

distributed over the range [-1,1], and the mixing parameters 

are             and            . These values for 

the source amplitude and coefficients are known to cause the 

original Hosseini-Deville network [5] to be potentially 

unstable, as can be seen in the upper two panels of Fig. 1. In 

contrast, it can be seen, in the lower panel, that the network 

based on the variable step size strategy was able to circumvent 

the stability problems, thus providing good estimates of the 

original sources. 

In the simulation, both recurrent networks had an upper 

limit of 4000 iterations. We have obtained mean-squared error 

(MSE) values for the network with variable step size of 

          and           for sources 1 and 2 

respectively, which are very small compared to the source 

amplitudes. For the original network, however, the MSE could 

not be properly estimated due to the existence of several 

points that diverged to infinity.  

If we consider only the points that converged, however, we 

obtain MSEs of           and          , which are 

much higher than those obtained for the network with the 

variable step size. We have also verified that only 67.4% of 

the points converged. It should also be noticed that, here and 

in all cases treated in this work, both networks are initialized 

with the null vector, which ensures a fair convergence 

comparison. 

In the second simulation, we have used sources uniformly 

distributed in the [-2,2] interval, and mixing coefficients with 

values        ,        ,         and       . None 

of the structures was able to have a satisfactory convergence 

for all points, but, as can be seen in Fig. 2, the proposed 

network had a better overall performance, as confirmed by the 

MSE values: 0.24 and 0.64 for the Hosseini-Deville network 

(for sources 1 and 2 respectively), and 0.11 and 0.50 for the 

proposed network. Moreover, the proposed network 

converged for 87% of the points, whereas the Hosseini-Deville 

network converged for 68.1% of the points. 

 

Figure 1 – Distribution of the original sources and of the source 

estimates generated using the canonical Hosseini-Deville network 

and the variable step size approach described in Section III.3.  

 

Figure 2 - Distribution of the original sources and of the source 

estimates generated using the canonical Hosseini-Deville network 

and the variable step size approach described in Section III.3. 

 

IV.2 – Elements of a More Detailed Dynamical Analysis 

In order to analyze in more detail the stability of the 

proposed network, we will consider a setup for which the 

canonical Hosseini-Deville network does not reach a fixed 
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point [8]. The following parameters are used:          , 

         . A single time instant, in which the source 

samples are      ,      , is considered. 

In the upper panel of Fig. 3, we present the bifurcation 

diagram obtained from one of the state variables of the 

proposed network by varying the step size . Qualitatively, 

one notices that, for values of  smaller than a threshold 

approximately equal to 0.8, there is convergence to the desired 

fixed point (-1, the value of the sample associated with the 

source s1). Interestingly, when  exceeds this limit, there is a 

cascade of period-doubling bifurcations that eventually lead to 

chaos (notice the ―dense regions‖ of the diagram), which 

characterizes a typical Feigenbaum scenario [6]. This analysis 

is rigorously confirmed by the lower panel of Fig. 3, which 

brings an estimate of the value of the largest Lyapunov 

exponent associated with the network [6]. The existence of 

positive values for this exponent confirms the existence of 

chaotic behavior, whereas the negative values correspond to 

convergence to fixed points or limit cycles. Finally, the null 

values indicate the values for which there occur bifurcations. 

It must be said that, after the region of chaotic behavior, we 

have a conventional pattern of divergence towards infinity.      

 

Figure 3 – Bifurcation Diagram and Largest Lyapunov Exponent  

  

This analysis, albeit preliminary, clearly reveals the 

complexity of possible behaviors arising from recurrent 

networks following the Hosseini-Deville structure and 

indicates the importance of using control strategies like the 

variable step size proposed in this work, or alternatively, the 

self-feedback existing in the extended version of Hosseini-

Deville recurrent network [8]. 

V – CONCLUSION 

In this work, we presented an interpretation of recurrent 

methods for source separation in terms of local inversion 

based on iterative methods for solving nonlinear systems of 

algebraic equations. Firstly, it was shown that both the 

Hérault-Jutten and the basic version of Deville-Hosseini 

approaches are, in their respective application domains, 

equivalent to ―first-order‖ numerical strategies.  

In the following, a new network, based on a line search 

strategy devised to seek step sizes capable of minimizing the 

error, was proposed. Based on simulations performed for two 

different scenarios, it was shown that the new network was 

capable of having a stable behavior for a wider range of values 

in comparison with the canonical network structure used for 

linear-quadratic models. Finally, a preliminary dynamical 

analysis of the proposed network revealed the existence of 

limit cycles and chaos for the basic Deville-Hosseini 

architecture and gave further support to the conclusion that 

stabilizing mechanisms are highly desirable whenever iterative 

methods like those discussed here are employed. 

As perspectives for future work, we indicate the extension 

of the idea presented here to ―second-order‖ methods, like the 

Newton-Raphson method, as well as the analysis of other 

mixing system orders and models. We also intend to compare 

these networks with the extended Deville-Hosseini network. A 

detailed study concerning the blind case and an extension of 

the presented dynamical analysis are also in our plans.  
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